
IJSRSET152240 | Received: 10 March 2015 | Accepted: 30 March 2015 | March-April 2015 [(1)2: 269-273]

© 2015 IJSRSET | Volume 1 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

269

Fine Grained Updates in Cloud Using Third Party Auditing
M Paventhan, C Murugavel, S Rajadurai

Dhanalakshmi College of Engineering, Chennai, Tamilnadu, India

ABSTRACT

Users of cloud storage services no longer physically maintain direct control over their data, which makes data

security one of the major concerns of using cloud. Existing research work already allows data integrity to be verified

without possession of the actual data file. When the verification is done by a trusted third party, this verification

process is also called data auditing and this third party is called an auditor. We call coarse-grained updates. As a

result, every small update will cause re-computation and updating of the authenticator for an entire file block, which

in turn causes higher storage and communication overheads. We provide a formal analysis for possible types of fine-

grained data updates and propose a scheme that can fully support authorized auditing and fine-grained update

requests. Based on our scheme, we also propose an enhancement that can dramatically reduce communication

overheads for verifying small updates. Theoretical analysis and experimental results demonstrate that our scheme

can offer not only enhanced security and flexibility, but also significantly lower overhead for big data applications

with a large number of frequent small updates.

Keywords: Cloud Computing, Data Security, Provable Data Possession Authorized Auditing, Fine-Grained

Dynamic Data Update

I. INTRODUCTION

Cloud computing is being intensively referred as one of

the most influential innovations in information

technology in recent years. With resource virtualization,

cloud can deliver computing resources and services in a

pay-as-you-go mode, which is envisioned to become as

convenient to use similar to daily-life utilities such as

electricity, gas, and water and telephone in the near

future .These services, can be categorized into

Infrastructure-as-a-Service, Platform-as-a-Service and

Software-as-a-Service. Many international IT

corporations now offer powerful public cloud services to

users on a scale from individual to enterprise all over the

world; for examples are Amazon AWS, Microsoft Azure,

and IBM Smart Cloud.

Although current development and proliferation of cloud

computing is rapid, debates and hesitations on the usage

of cloud still exist. Data security/privacy is one of the

major concerns in the adoption of cloud computing.

Compared to conventional systems, users will lose their

direct control over their data. In this paper, we will

Investigate the problem of integrity verification for

storage in cloud. This problem can also be called data

auditing. When the verification is conducted by a trusted

third party (TPA). From cloud user’s perspective, it may

also be called ‘auditing-as-a-service’. To date, extensive

research is carried out to address this problem. In a

remote verification scheme, the cloud storage server

cannot provide a valid integrity proof of a given

proportion of data to a verifier unless all this data is

intact. To ensure integrity of user data stored on cloud

service provider, this support is of no less importance

than any data protection mechanism deployed by the

cloud service provider (CSP), no matter how secure they

seem to be, in that it will provide the verifier a piece of

direct, trustworthy and real-timed intelligence of the

integrity of the cloud user’s data through a challenge

request. It is especially recommended that data auditing

is to be conducted on a regular basis for the users who

have high-level security demands over their

data .Although existing data auditing schemes already

have various properties, potential risks and inefficiency

such as security risks in unauthorized auditing requests

and inefficiency in processing small updates still exist.

In this paper, we will focus on better support for small

dynamic updates, which benefits the scalability and

efficiency of a cloud storage server. To achieve this, our

scheme utilizes a flexible data segmentation strategy and

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

270

a ranked Merkle hash tree (RMHT). Meanwhile, we will

address a potential security problem in supporting public

verifiability to make the scheme more secure and robust,

which is achieved by adding an additional authorization

process among the three participating parties of client,

CSS and a third-party auditor (TPA).

II. METHODS AND MATERIAL

A. Related Work

In traditional systems, scalability and elasticity are key

advantages of cloud. As such, efficiency in supporting

dynamic data is of great importance. Security and

privacy protection on dynamic data has been studied

extensively in the past. In this paper, we will focus on

small and frequent data updates, which is important

because these updates exist in many cloud applications

such as business transactions and online social networks

(e.g. twitter). Cloud users may also need to split big

datasets into smaller datasets and store them in different

physical servers for reliability, privacy-preserving or

efficient processing purposes .Among the most pressing

problems related to cloud is data security/privacy. It has

been one of the most frequently raised concerns. There

is a lot of work trying to enhance cloud data

security/privacy with technological approaches on CSP

side. As they are of equal importance as our focus of

external verifications .Integrity verification for

outsourced data storage has attracted extensive research

interest. The concept of proofs of retrieve ability (POR)

and its first model was proposed. Unfortunately, their

scheme can only be applied to static data storage such as

archive or library. In the same year, Ateniese, et al.

proposed a similar model named ‘provable data

possession’ (PDP). Their schemes offer ‘block less

verification’ which means the verifier can verify the

integrity of a proportion of the outsourced file through

verifying a combination of pre-computed file tags which

they call homo morphic verifiable tags (HVTs) or

holomorphic linear authenticators (HLAs). Work by

Shacham, et al provided an improved POR model with

stateless verification. They also proposed a MAC-based

private verification scheme and the first public

verification scheme in the literature that based on BLS

signature scheme. In their second scheme, the generation

and verification of integrity proofs are similar to signing

and verification of BLS signatures. When wielding the

same security strength (say, 80-bit security), a BLS

signature (160 bit) is much shorter than an RSA

signature (1024 bit), which is a desired benefit for a

POR scheme. They also proved the security of both their

schemes and the PDP scheme by Ateniese. From then on,

the concepts of PDP and POR were in fact unified under

this new compact POR model. Ateniese, extended their

scheme for enhanced scalability, but only partial data

dynamics and a predefined number of Challenges are

supported. In 2009, Erway, et al. proposed the first PDP

scheme based on skip list that can support full dynamic

data updates [12]. However, public auditability and

variable-sized file blocks are not supported by

default .Wang, proposed a scheme based on BLS

signature that can support public auditing (especially

from a third party auditor, TPA) and full data dynamics,

which is one of the latest works on public data auditing

with dynamics support. However, their scheme lacks

support for fine grained update and authorized auditing

which are the main focuses of our work. Latest work by

Wang. Added a random masking technology on top of to

ensure the TPA cannot infer the raw data file from a

series of integrity proofs. In their scheme, they also

incorporated a strategy first proposed in to segment file

blocks into multiple ‘sectors’. However, the use of this

strategy was limited to trading-off storage cost with

communication cost. Other lines of research in this area

include the work of Ateniese, on how to transform a

mutual identification protocol to a PDP scheme; scheme

by Zhu. That allows different service providers in a

hybrid cloud to cooperatively prove data integrity to data

owner; and the MR-PDP Scheme based on PDP

proposed by Curtmola, that can efficiently prove the

integrity of multiple replicas along with the original data

file.

Figure 1: Relationship between the participating parties

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

271

B. Problem Statement

 Many big data applications will keep user data stored on

the cloud for small-sized but very frequent updates. A

most typical example is Twitter, where each tweet is

restricted to140 characters long (which equal 140 bytes

in ASCII code).They can add up to a total of 12

terabytes of data per day. Storage of transaction records

in banking or securities markets is a similar and more

security-heavy example. Moreover, cloud users may

need to split large-scale datasets into smaller chunks

before uploading to the cloud for privacy-preserving

[17] or efficient scheduling [19]. In this regard,

efficiency in processing small updates is always

essential in big data applications.

To better support scalability and elasticity of cloud

computing, some recent public data auditing schemes do

support data dynamics. However, types of updates

supported are limited. Therefore previous schemes may

not be suitable for some practical scenarios. Besides,

there is a potential security threat in the existing

schemes. The necessary authorization and authentication

process between the auditor and cloud service provider

in the existing system support dynamic data updates

over fixed size data blocks, as a result every small

update will cause re-computation and updating of the

entire file block.

III. RESULTS AND DISCUSSION

A. Proposed Scheme

Proposed scheme can fully support authorized auditing

and fine-grained update requests. Based on our scheme,

we also propose an enhancement that can dramatically

reduce communication overheads for verifying small

updates Cloud storage fine grained data updates and to

implement a scheme that fully support authorized

auditing and fine grained update requests. In verification

process the main adversary is the untrustworthy server

did not carry out the data update successfully.

B. Roles of the Participating Parties

Most PDP and POR schemes can support public data

verification. In such schemes, there are three

participating parties: client, CSS and TPA. In brief, both

CSS and TPA are only semi-trusted to the client. In the

old model, the challenge message is very simple so that

everyone can send a challenge to CSS for the proof of a

certain set of file blocks, which can enable malicious

exploits in practice. First, a malicious party can launch

distributed denial-of-service attacks by sending multiple

challenges from multiple clients at a time to cause

additional overhead on CSS and congestion to its

network connections, thereby causing degeneration of

service qualities. Second, an adversary may get privacy-

sensitive information from the integrity proofs returned

by CSS. By challenging the CSS multiple times, an

adversary can either get considerable information about

user data or gather statistical information about cloud

service status. To this end, traditional PDP models

cannot quite meet the security requirements of ‘auditing-

as-a-service’, even though they support public

verifiability.

i. Verifiable Fine-Grained Data Operations

Some of the existing public auditing schemes can

already support full data dynamics in their models, only

insertions, deletions and modifications on fixed-sized

blocks are discussed. Particularly, in BLS-signature-

based schemes with 80-bit security, size of each data

block is either restricted by the 160-bit prime group

order p, as each block is segmented into a fixed number

of 160-bit sectors. This design is inherently unsuitable to

support variable-sized blocks, despite their remarkable

advantage of shorter integrity proofs. In fact, as

described existing schemes can only support insertion,

deletion or modification of one or multiple fixed-sized

blocks, which we call ‘coarse-grained’ updates.

ii. Ranked Merkle Hash Tree (RMHT)

The Merkle Hash Tree (MHT) has been studied in the

past. In this paper we utilize an extended MHT with

ranks which we named RMHT. Similar to a binary tree,

each node N will have a maximum of 2 child nodes. In

fact, according to the update algorithm, every non-leaf

node will constantly have 2 child nodes. Information

contained in one node N in an RMHT T is represented

as fH; rNg where H is a hash value and rN is the rank of

this node. T is constructed as follows. For a leaf node

LN based on a message mi, we have H ¼ hðmiÞ, rLN ¼

si; A parent node of N1 ¼ fH1; rN1g and N2 ¼ fH2;

rN2g is constructed as NP ¼ fhðH1kH2Þ; ðrN1 þ rN2Þg

where k is a concatenation operator. A leaf node mi’s

AAI Wi is a set of hash values chosen from every of its

upper level so that the root value R can be computed

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

272

through fmi;Wig. For example, for the RMHT , m1’s

AAI W1 ¼ fhðm2Þ; hðeÞ; hðdÞg. According to the

property of RMHT, we know that the number of hash

values included in Wi

Figure 2: RHMT Tree

iii. Our Scheme

 We now describe our proposed scheme in the aim of

supporting variable-sized data blocks, authorized third

party auditing and fine-grained dynamic data updates.

Our scheme is described in three parts:

1. Setup: the client will generate keying materials via

KeyGen and FileProc, then upload the data to CSS.

Different from previous schemes, the client will store a

RMHT instead of a MHT as metadata. Moreover, the

client will authorize the TPA by sharing a value

sigAUTH.

 2. Verifiable Data Updating: the CSS performs the

client’s fine-grained update requests via Perform

Update, then the client runs Verify Update to check

whether CSS has performed the updates on both the data

blocks and their corresponding authenticators (usedfor

auditing) honestly.

 3. Challenge, Proof Generation and Verification:

Describes how the integrity of the data stored on CSS is

verified by TPA via GenChallenge, GenProof and

Verify.

iv. Prepare for Authorization

The client asks (her choice of) TPA for its ID VID (for

security, VID is used for authorization only). TPA will

then return its ID, encrypted with the client’s public key.

The client will then compute sigAUTH ¼

SigsskðAUTHktkVIDÞ and sends sigAUTH along with

the auditing delegation request to TPA for it to compose

a challenge later on. Different from existing schemes,

after the execution of the above two algorithms, the

client will keep the RMHT ‘skeleton’ with only ranks of

each node and indices of each file block to reduce fine-

grained update requests to block level operations. The

client then sends fF; t;F; sig;AUTHg to CSS and deletes

fF;F; t;F; sigg from its local storage. The CSS will

construct an RMHT T based on mi and keep stored with

fF; t;F; sig; AUTHg for later verification, which should

be identical to the tree spawned at clientside

v. Verifiable Data Updating

Same as Setup, this process will also be between client

and CSS. We discuss 5 types of block-level updates

(operations) that will affect T: PM, M, D, J and SP (see

Definition 1). We will discuss how these requests can

form fine-grained update requests in general. The

verifiable data update process for a PM-typed update is

as follows :

1. The client composes an update quest UpdateReq

defined in Section 4.2 and sends it to CSS.

2. CSS executes the following algorithm:

PerformUpdateðUpdateReq;FÞ: CSS parses

UpdateReq and get fPM; i;o;mnewg. When Type ¼

PM, CSS will update mi and T accordingly, then

output Pupdate ¼ fmi;Wi;R0; sigg (note that Wi

stays the same during the update) and the updated

file F0. Upon finishing of this algorithm, CSS will

send Pupdate to the client.

3. After receiving Pupdate, the client executes the

following algorithm:

VerifyUpdateðpk; PupdateÞ: The client computes

m0 i using fmi; UpdateReqg, then parse Pupdate to

fmi;Wi; R0; sigg, compute R (and HðRÞ) and Rnew

use fmi;Wig and fm0i;Wig respectively. It verifies

sig use HðRÞ, and check if Rnew ¼ R0. If either of

these two verifications fails, then output FALSE and

return to CSS, otherwise. Due to their similarity to

the process described above, other types of

operations are only briefly discussed as follows. For

whole-block operations M, D, and J, as in model in

the existing work , the client can directly compute

_0 i without retrieving data from the original file F

stored on CSS, thus the client can send _0 i along

with UpdateReq in the first phase. For responding to

an update request, CSS only needs to send back

HðmiÞ instead of mi. Other operations will be

similar to where Type ¼ PM. For an SP-typed

update, in addition to updating mi to m i, a new

block m_ needs to be inserted to T after m0i.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

273

Nonetheless, as the contents in m_ are a part of the old

mi, the CSS still needs to send mi back to the client. The

process afterwards will be just similar to a PM-typed

upgrade, with an only exception that the client will

compute Rnew using fm0 i; hðm_Þ;Wig to compare to

R0, instead of using fm0 i;Wig as in the PM-typed

update.

vi. Analysis on Fine-Grained Dynamic

Data Updates

Following the settings in our proposed scheme, we now

define a fine-grained update request for an outsourced

file divided into l variable-sized blocks, where each

block is consisted of si ½1; smax_ segments of a fixed

size _ each. Assume an RMHT T is built upon

fmigi2½1;l_ for authentication, which means T must

keep updated with each RMHT operation for CSS to

send back the root R for the client to verify the

correctness of this operation .We now try to define and

categorize all types of fine-grained updates, and then

analyze the RMHT operations with Type ¼ PM;M;D; J

or SP that will be invoked along with

The update of the data file.

IV. CONCLUSION

In this paper, we have provided a formal analysis on

possible types of fine-grained data updates and proposed

a scheme that can fully support authorized auditing and

fine-grained update requests. Based on our scheme, we

have also proposed a modification that can dramatically

reduce communication overheads for verifications of

small updates. Theoretical analysis and experimental

results have demonstrated that our scheme can offer not

only enhanced security and flexibility, but also

significantly lower overheads for big data applications

with a large number of frequent small updates such as

applications in social media and business transactions.

Based on the contributions of this paper on improved

data auditing, we plan to further investigate the next step

on how to improve other server-side protection methods

for efficient data security with effective data

confidentiality and availability. Besides, we also plan to

investigate auditability-aware data scheduling in cloud

computing. As data security is also considered as a

metric of quality-of service (QoS) along with other

metrics such as storage and computation, a highly

efficient security-aware scheduling scheme will play an

essential role under most cloud computing contexts.

V. REFERENCES

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I.

Brandic,‘‘Cloud Computing and Emerging IT Platforms:

Vision, Hype,Reality for Delivering Computing as the 5th

Utility,’’ Future Gen.Comput. Syst., vol. 25, no. 6, pp. 599-616,

June 2009.

[2] M.Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.Katz,

A.Konwinski,G. Lee, D. Patterson, A. Rabkin, I. Stoica, andM.

Zaharia, ‘‘AViewof Cloud Computing,’’ Commun. ACM, vol.

53, no.4, pp. 50-58,Apr. 2010.

[3] R. Curtmola, O. Khan, R.C. Burns, and G. Ateniese, ‘‘MR-

PDP:Multiple-Replica Provable Data Possession,’’ in Proc. 28th

IEEEConf. on Distrib. Comput. Syst. (ICDCS), 2008, pp. 411-

420.

[4] C. Erway, A. Ku¨ pc¸u¨ , C. Papamanthou, and R.

Tamassia,‘‘Dynamic Provable Data Possession,’’ in Proc. 16th

ACM Conf.on Comput. and Commun. Security (CCS), 2009,

pp. 213-222.

[5] S.E. Schmidt, ‘‘Security and Privacy in the AWS

Cloud,’’presented at the Presentation Amazon Summit

Australia,Sydney,Australia,May 2012, accessed on: March 25,

2013.

